Virtual Machines VS Containers

From an isolation perspective
21 February 2020

Francesco Romani
Senior Software Engineer, Red Hat
fromani {gmail,redhat}

whoami

e sweng @ Red Hat: opinions and mistakes are my own!

e daily toolset: golang, kubernetes, podman

e worked with VMs: ~2013-~2018

e worked with containers: ~2018 - ...

e interested in: more, golang, more containers, lisp (someday!)
e happy linux user (red hat linux, debian, ubuntu, fedora)

e geek

Outline

e Dramatis personae

e How a container is made
e How a (K)VM is made

e The Fallout

STANDARD DISCLAIMER
Software Engineer, not security expert!
Mistakes may happen - please point them out!

All opinions are mine only

Versus?

Mid-Late 2000s (~2004 - ~2010) was all about VMs
Mid-Late 2010s (~2014 - ~2020) is all about containers

Containers (initially?) advertised as "better" (easier, simpler less resources) virtualization

Different tools, some overlap in the use cases, large overlap in the technology stack.

5

From a security perspective?
The cloud use case

It's (mostly) about isolating workloads
What about software distribution?

As usual, a lots of tradeoff are involved

Dramatis personae

Virtual Machines

"Avirtual machine (VM) is an emulation of a computer system. Virtual machines are based
on computer architectures and provide functionality of a physical computer."

"[...] virtual machines [...] provide a substitute for a real machine. They provide functionality
needed to execute entire operating systems."

"Modern hypervisors use hardware-assisted virtualization, virtualization-specific hardware,
primarily from the host CPUs."

source. W| k| ped |a (https://en.wikipedia.org/wikiVirtual_machine)

https://en.wikipedia.org/wiki/Virtual_machine

Virtual Machines (2)

Linux

Virtual Hardware -
Libs

kWM

Linux

Hardware

"(Linux) Virtual machine block diagram" - (C) Francesco Romani 2019 - CC by-sa 4.0

Containers

A (Linux) container is a set of one or more processes isolated from the rest of the system,
using facilities of the Linux kernel

source:. n Ot d Ctu d | q u Ote ! ama | ga m atl on. (https://enwikipedia.org/wiki/List_of_Linux_containers)

That's cgroups+seccomp+selinux+namespaces... All conveniently packed in a container
runtime (cri-o, docker, rkt...)

10

https://en.wikipedia.org/wiki/List_of_Linux_containers

Containers (2)

Container Runtime

Linux

Hardware

"(Linux) Containers block diagram" - (C) Francesco Romani 2019 - CC by-sa 4.0

11

Virtual Machines vs Containers

Linux
Virtual Hardware _ - _
th:" Container Runtime Libs

Llnux Linux

Hardware Hardware

"(Linux) VMs vs Containers block diagram" - (C) Francesco Romani 2019 - CC by-sa 4.0

How a container is made

13

Meet the containers

'..]'- Il.'lllal. _'_-I

"Containers are being loaded on the container ship MSC Sola at the container terminal of Bremerhaven in Germany" by

Tvabutzku1234, public domain, from Wikimedia Commons 14

A recipe for containers

The basic building blocks:
- namespaces. process isolation
- cgroups: resource limits

Security enforcement tools:

- seccomp: limit syscall usage

- SELinux: mandatory access control

- linux capabilities: finer-grained privileges

15

Namespaces: Intro
Inception: ~2002; major developments ~2006 and onwards.

A namespace...

wraps a global system resource in an abstraction that makes it appear to the processes
within the namespace that they have their own isolated instance of the global resource.

[...]

One use of namespaces is to implement containers.

Namespaces are ephemeral by default: they are tied to the lifetime of a process.
Once that process is gone, so is the namespace.

maore d ocume ntat| on (http://man7.org/linux/man-pages/man7/namespaces.7.html)

16

http://man7.org/linux/man-pages/man7/namespaces.7.html

Namespaces: API
A Kernel API, syscalls:

e unshare(2): move calling process in new namespace(s) - and more.
e setns(2): make the calling process join existing namespace(s)

e clone(2): create a new process, optionally joining a new namespace - and much more.

Namespaces: what we can unshare?

e Cgroup: cgroup root directory (more on that later)

ipc: System V IPC, POSIX message queues
network: network devices, stacks, ports, etc.
mount: mount points

pid: process id hierarchy

user: user and group IDs

uts: hostname and NIS domain name

time: the very last addition (linux 5.6)

maore d ocume ntat| on (http://man7.org/linux/man-pages/man7/namespaces.7.htmi)

18

http://man7.org/linux/man-pages/man7/namespaces.7.html

Namespaces DIY: unshare
PID of the current shell:

///samurai7/~># echo $%
5184

We start a new process (bash) with different network and PID namespaces

///samurai7/~># unshare --net --fork --pid --mount-proc bash
///samurai7/~># echo $$

1

///samurai7/~># ifconfig

///samurai7/~>#

Let's doublecheck:

///samurai7/~># 1ls -1h /proc/{1,5184,5282}/ns/pid

Irwxrwxrwx. 1 root root O Feb 21 19:54 /proc/1/ns/pid -> pid:[4026531836]
lrwxrwxrwx. 1 root root 0 Feb 21 19:53 /proc/5184/ns/pid -> pid:[4026531836]
lrwxrwxrwx. 1 root root O Feb 21 19:54 /proc/5282/ns/pid -> pid:[4026532544]

19

Namespaces DIY: nsenter

Let's enter the namespaces context we created in the slide before:

///samurai7/~># nsenter -a -t 5282 /bin/sh
sh-4.4# ps -fauxw

USER PID %CPU %MEM VSZ RSS TTY
root 32 0.0 0.0 122680 3864 pts/4
root 33 0.0 0.0 149756 3700 pts/4
root 1 0.0 0.0 123884 5108 pts/2
sh-4.4# echo $$

32

STAT START
S 20:00
R+ 20:00
S+ 19:53

TIME COMMAND

0:00 /bin/sh

0:00 _ ps -fauxw
0:00 bash

20

Namespaces: wrap up

Namespaces allow us to have separate instances of system resources.

Operating System resources are still shared

With the linux namespaces, we have the bare bones of a simpl{e,istic} container engine!

But much more is needed.

21

cgroups: intro
Inception: ~2007. Major update: ~2013

Linux C ontrol Groups: allow process to be organized in hierarical groups to
do limiting and accounting of certain system resources.

Most notably, memory and CPU time (and more: block I/0, pids...)
Powerful and easy-as-possible resource control mechanism

But still quite complex to manage

22

cgroups: what can we control?

blkio: limits on input/output access to and from devices

Cpu: uses the scheduler to provide cgroup tasks access to the CPU
cpuacct: automatic reports on CPU resources used by tasks
cpuset: assigns individual CPUs and memory nodes to tasks
memory: sets limits on memory and reports on memory resources

perf_event: performance analysis.

Specific Linux Distribution (e.g. RHEL) may offer more cgroups.

Add your own!

23

cgroups: API
Just use sysfs:
echo browser_pid > /sys/fs/cgroup/<restype>/<userclass>/tasks
command line tools: cgcreate, cgexec, and cgclassify (from libcgroup).
Or just let your management engine do that for you:

e systemd
e docker

e libvirt (spoiler!!)

24

cgroups: DIY

Mostly, you don't wantto do it :)

“T SPEND A LOT OF TIME ON THIS TRSK.
T SHOULD LIRITE A PROGRAM AUTOMATING IT!™

THEORY:

Seriously, the management tool (whatever it is) almost always Just Works (tm) and
itis simpler to tune.

cgroups: wrap-up

CGroups provide resource 1imit and accounting

Organized in hierarchies

A LOT of subtleties with respect to accounting and sensible limits
Here's why you should not DIY - don't reinvent a square wheel

Deserves a (long) talk on its own

26

seccomp
Inception: ~2005; Major update ~2012
Operational modes:

e Odisabled
e 1 for strict: only four system calls: read, write, exit, sigreturn

e 2 forfilter: allow developers to write filters to determine if a given syscall can run

27

seccomp: API & DIY

Kernel API (syscall), so just prctl(2) and seccomp(2)

And obviously procfs interface.

You can add your own syscall filters using BPF language (!!!)

Again, better don't reinvent the wheel, just use profiles from your management engine

If you reaIIy want to DIY, maybe start here (https//wn.net/Articles/656307/)

28

https://lwn.net/Articles/656307/

SELinux
Inception: ~1998

Adds Mandatory Access Control (MAC) and Role Based Access Control (RBAC) to the linux
kernel

Linux, being UNIX-Like, previously supported only Discretionary Access Control

29

SELinux: DAC vs MAC vs RBAC
WARNING: brutal semplification ahead

DAC: access control is based on the discretion of the owner: root can do anything.

MAC: the system (and not the users) specifies which can access what: no, even root cannot
do that.

RBAC: in a nutshell, generalization of MAC: create and manage Roles to specify which entity
can access which data.

bewa e. Aga | n. th e WO I’| d |S MUucC h Mmore com p | ex th an th at « « (https://en.wikipedia.org/wiki/Role-based_access_control) 30

https://en.wikipedia.org/wiki/Role-based_access_control

SELINUX: Daily usage

Mostly used on CentQS, Fedora, RHEL, RHEL-derived distributions

SELinux used to be perceived as overly complex, and overly annoying too.

"Just disable SELinux" was a recurrent advice up until not so long ago

It got EXTREMELY better: most of time, you don't even notice it is running. Just Works (tm)
Except when it prevents exploits :)

If you need to troubleshoot something, audit2why is usally a great start

Again, most often just use the profiles your distribution/management engine provides

Lots of documentation available ipseinuprojectorg/pagemmain page) 31

http://selinuxproject.org/page/Main_Page

How a (K)VM is made

32

Virtual Machines

FLB Wirlual Machine E:
File: Virtual Machine: Wiew Sand Hay
[E FT-:-r.-l“ 4L E:) g '-:“
| e i CPUs
B Performance Logical host CPLUs: B
B Processor Current allocation; 2 =+l
Moy Mk sz | =+
3% Boot Optlons '
e WirthCr Disk 1 * Configuration
B NIC 40iee:0h | Copy hast CPU configuration
2 Mause Model: | Opteron.Ge .
B Display Spice
BR scund:ichi " Topology
G5 Console ' Finning
fe Channel spice
M ides o
H Controller Virtio Seral |
_! Controller USB
Add Hardware Cancel Anply

virt-manager screenshot, from https://www.virt-manager.org/wp-content/uploads/2014/01/details.png 33

Preamble

VMs went a long way - even on x86

We will focus only on the "winner stack": [VT-x/SVM +] KVM + QEMU (e.g. not Xen)

The history is more complex

34

The modern Linux virtualization stack

e HWe-assisted virtualization; Intel VT-x, AMD SVM

e KVM: Linux (lightweight but complete) Hypervisor, makes use of HW-assisted
virtualization

e QEMU: System emulator, provides I/0, management layer, uses KVM for acceleration

e Libvirt: better management layer, adds isolation/containment to QEMU instances

35

Concepts: Hypervisor

A hypervisor a supervisor-of-supervisor

The kernel is a supervisor

A hypervisor allows to run Virtual Machines (OSes inside OSes)
KVM makes the Linux kernel a hypervisor

Of course you can still run regular processes alongside VMs!
Linx + KVM is both a hypervisor and a supervisor (not always the case).

36

Concepts: x86 hw-assisted virtualization
We'll just cover the basics - otherwise there's material worth few slide decks...

e New x86 instructions (like MMX, SSE*, AVX...)
Introduced by Intel (2005) and AMD (2006)

e From user perspective, nowadays (2020) pretty much equivalent

Both supported by KVM
Both allowes nested VMs (VMs inside VMS)

37

Concepts: virtualized vs paravirtualized
(Full-)virtualization: the guest OS is not aware it runs in a VM.

Paravirtualization: the guest OS is aware it is running in a VM.
- Special device/device drivers (virtio)
- The guest OS may adjust itself (e.g. scheduler, host-provided hints)

38

HW-assisted x86 virtualization, in a nutshell

e New CPU operational mode root and non-root.

e New modes orthogonal to both cpu mode (real, protected, long) and privilege (0-3).

Hypervisor run in root mode

VMSs run in non-root mode.

Provileged instructions which also change the context of the CPU (clock, interrupt regs,
control regs) cannot be executed in non-root mode. 39

Some VT-x instructions

e VMXON: enables virtualization support. Must be called first. Leaves CPU in root mode.
e VMLAUNCH: creates a VM and enters non-root mode.

e VMRESUME: (re-)enters non-root mode for an existing VM.

e VMREAD / VMWRITE: access VMCS.

40

VMEXITs

vmexit: When a VM tries to execute a CPU-state-changing operation, disallowed in non-root
mode, the CPU switches back to root mode (like a trap).

After a vmexit, the hypervisor must take actions to let the VM resume its operations, and
then call VMRESUME

How does the hypervisor know WHY a vmexit happened? 41

VMCSes

Each VM instance has a Virtual Machine Control Structure (VMCS),
a 4 KiB segment which contains the VM context.

The VMCS holds the virtual CPU state (as seen by the guest)
The VMCS holds the reason why a vmexit happen.

42

The x86 virtualization in a nutshell

The key component of the X86 virtualization is the interaction between root and non-root
code:

hypervisor -> VMLAUNCH -> vmexit -> [hypervisor actions from VMCS data] -> VMRESUME43

KVM

In a nutshell

- Turns Linux into a hypervisor

- built on top of hardware virtualization (VT-x, SVM)
- APl as device /dev/kvm, ioctl()s

Do not use directly! (use gemu! or kvmtool or pretty much any other linux tool)

QEMU uses it as accelerator

QEMU

Can emulate hardware

Used in the virtualization stack to handle 1/0 (device emulation)
Uses KVM to achieve near-native execution speed

/O speed close to native with paravirtualization

Large, complex software

command line only tool - not easy to manage

45

Libvirt
e toolkit to manage virtualization platform
e QEMU+KVM is the most popular (and developed) target
e stable interface

e applies additional isolation layers around QEMU

libvirt + systemd = {cgroups, selinux} around QEMU

46

Wrapping up - and some musings about security

47

VMs
e OS-inside-OS
e perceived as heavyeight, slow to spin up, hard to manage
e guest apps interact with guest Kernel
e actually two layers of operating system around your code
e more layers -> more code -> more bugs
e VM escape techniques do exist

e still the greatest possible isolation

48

Containers

e shared kernel with host OS

e easy and lightweight to get started - aka nice scaling down

e guest apps interact with host kernel - but they believe they are alone)
e made popular by docker

e friendlier tooling overall?

e weak isolation

49

The fallout - and more musings about security

50

Containers as amalgamation of technologies
Containers don't exist -YET- as proper linux objects

Containers are made of a set of linux technologies which create isolation layer(s) around
regular processes

B delile o) baiie Sl oodedéle St mold aed o s2dlce & The
Jdriehed Biock coe! in Tels el

"19th century knowledge mechanisms homemade concrete block mold parts" by Henry Colin Campbell, Public Domain, from

Wikimedia Commons 51

Containers are turbo-charged processes

Wait, QEMU is a process too!

So what does prevent us to use the same isolation technologies around Virtual Machines?

_3? i

SR

. _\#,-l

whalbigan i o e gt o £ e Mt e

il it o hardased s ety AT e T i
‘ﬂ'glil-" A e K A e A r:jhmb:r thadadia ':VJ-\.--....-\..:_;-H--\.;':'.

Seada T i e e Sty A0 e i

Columbus Breaking the Egg, CCO, From Wikimedia Commons

52

Extra-isolated VMs

The modern linux (virtualization) stack IS using a good chunk of isolation technologies
around VMs

Defense in depth
Libvirt uses SELinux (if available) to restrict the VM behaviour

Systemd provides cgroup isolation out of the box

53

Container building blocks integration

The technologies powering containers are being pushed down the linux kernel stack

Container Runtime

System libs (libc...)

Hardware

n bEIEEj'ﬁ |. E'lTI-"

"(Linux) container stack evolution block diagram" - (C) Francesco Romani 2020 - CC by-sa 4.0

54

Container building blocks integration /2

The modern linux systems are gaining more and more container-like capabilities out of the
box

Will container just disappear in the future?

Meaning, will they just become yet another type of service units? 55

What's a container, really?

If a container is a way to run isolated workloads, the basic linux system are gaining
capabilities to run them

- systemd (and more to come)
- podman?

If a container is a way to ship software, that's a completely different story.

Let's not open the pandora's box of (linux) software packaging.

56

So are container going to disappear?

It's hard to make predictions, especially about the future :)

57

Are VM going to disappear?
It's hard to make predictions, especially about the future :)
But VMs survived the container revolution.

VMs provide a different toolset.

58

Do we really have to choose?

VM resurgence!
VMs and containers are going to be integrated:

See;
- kubevirt
- kata containers

59

Q?A!

60

Thank you

Francesco Romani

Senior Software Engineer, Red Hat

fromani {gmail,redhat}
http://github.com/{mojaves,fromanirh} stpusinub comeszamojaves romanitszo)

http://github.com/%7Bmojaves,fromanirh%7D

